Calculus 2

Midterm Exam
March 25, 2022 (9:00-11:00)

university of groningen

Please turn over and read the instructions!

1) Consider the space curve C given by the vector function $\vec{r}:[0,2 \pi] \rightarrow \mathbb{R}^{3}$,

$$
\vec{r}(t)=e^{-t} \vec{\imath}+e^{-t} \sin t \vec{\jmath}+e^{-t} \cos t \vec{k}, \quad 0 \leq t \leq 2 \pi
$$

(9) a) Determine the first-, second- and third-order derivatives of $\vec{r}(t)$, i.e. calculate $\vec{r}^{\prime}(t), \vec{r}^{\prime \prime}(t)$ and $\vec{r}^{\prime \prime \prime}(t)$. Simplify as much as possible.

8 b) Find the length L of C and its parametrization by arc length s.
(9) c) Determine the unit tangent vector $\vec{T}(t)$, principal normal vector $\vec{N}(t)$ and binormal vector $\vec{B}(t)$ to C.

6 d) Compute the curvature $\kappa(t)$ and the torsion $\tau(t)$ of C.
2) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=10-2 x+8 y+x^{2}+2 y^{2}$.

66 a) Compute all first- and second-order partial derivatives of $f(x, y)$.
4 b) Determine the maximum rate of change of $f(x, y)$ at $(x, y)=(0,0)$.
2] c) Find the equation $z=L(x, y)$ for the tangent plane to the graph of $f(x, y)$ at the point $(0,0,10)$.
d) Find the absolute maximum and minimum of $f(x, y)$ on the closed region $E=\left\{(x, y) \mid x^{2}-2 x+2 y^{2} \leq 7\right\}$
3) Evaluate the double integral of the function seen in Problem 2 over the 16 region $R=\left\{(x, y) \mid(x-1)^{2}+2(y+2)^{2} \leq 1\right\}$. (Hint: Change variables via the transformation $T: x=1+u \cos v, y=-2+\frac{1}{\sqrt{2}} u \sin v$.)
4) Evaluate the following line integrals along the curve C in Problem 1:
(8) a) $\int_{C} g(x, y, z) d s$ with the function $g(x, y, z)=\frac{y \approx}{x^{3}}$.

10 b) $\int_{C} \vec{F} \cdot d \vec{r}$ with the vector field $\vec{F}(x, y, z)=z \vec{\jmath}-y \vec{k}$

Formula sheet

Arc Length $\quad L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t, \quad s(t)=\int_{a}^{t}\left|\vec{r}^{\prime}(u)\right| d u$
$\vec{T} \vec{N} \vec{B}$ frame: $\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}, \quad \vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left|\vec{T}^{\prime}(t)\right|}, \quad \vec{B}(t)=\vec{T}(t) \times \vec{N}(t)$
Curvature: $\kappa=\left|\frac{d \vec{T}}{d s}\right|=\frac{\left|\vec{T}^{\prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|}=\frac{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|^{3}}$
Torsion: $\tau=-\frac{d \vec{B}}{d s} \cdot \vec{N}=-\frac{\vec{B}^{\prime}(t) \cdot \vec{N}(t)}{\left|\vec{r}^{\prime}(t)\right|}=\frac{\left[\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right] \cdot \vec{r}^{\prime \prime \prime}(t)}{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|^{2}}$
Gradient of $f: \operatorname{grad} f(x, y)=\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle$
Linearization of f at $(a, b): L(x, y)=f_{x}(a, b)(x-a)+f_{y}(y-b)+f(a, b)$
Method of Lagrange Multipliers: To find the max. $/ \mathrm{min}$. of f along the level curve $g(x, y)=k$ solve $\nabla f(x, y)=\lambda \nabla g(x, y)$ for (x, y, λ) while making sure that $g(x, y)=k$ is satisfied.
Second Derivative Test: Let (a, b) be a stationary point of $f(x, y)$ and compute $D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then (a, b) is a saddle point of f.

Change of Variables in a Double Integral ($T: x=x(u, v), y=y(u, v)$) $\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$,
where $R=T(S)$ and $\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right)$ is the Jacobian.
Line Integral of a Scalar Function: $\int_{C} g(x, y, z) d s=\int_{a}^{b} g(\vec{r}(t))\left|\vec{r}^{\prime}(t)\right| d t$ Line Integral of a Vector Field: $\int_{C} \vec{F}(x, y, z) \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t$

Instructions

- write your name and student number on the top of each page!
- this is a closed-book exam, it is not allowed to use the textbook or the lecture notes
- you are allowed to use the formula sheet or a simple pocket calculator
- programmable calculators are not allowed, nor the use of electronic devices (tablet, laptop, mobile phone, etc.) to solve the exercises
- your work should be clearly and logically structured
- you should explain your reasoning using words
- include your computations, an answer without any computation will not be rewarded so also copy the computations from your scratch paper(s)
- you can achieve 100 points (including the 10 bonus points)

