Calculus 2 Midterm Exam March 25, 2022 (9:00-11:00)

Please turn over and read the instructions!

1) Consider the space curve C given by the vector function $\vec{r} \colon [0, 2\pi] \to \mathbb{R}^3$,

 $\vec{r}(t) = e^{-t} \vec{i} + e^{-t} \sin t \, \vec{j} + e^{-t} \cos t \, \vec{k}, \qquad 0 \le t \le 2\pi.$

- 9 a) Determine the first-, second- and third-order derivatives of $\vec{r}(t)$, i.e. calculate $\vec{r}'(t)$, $\vec{r}''(t)$ and $\vec{r}'''(t)$. Simplify as much as possible.
- (B) b) Find the length L of C and its parametrization by arc length s.
- 9 c) Determine the unit tangent vector $\vec{T}(t)$, principal normal vector $\vec{N}(t)$ and binormal vector $\vec{B}(t)$ to C.
- 6 d) Compute the curvature $\kappa(t)$ and the torsion $\tau(t)$ of C.
- 2) Consider the function $f \colon \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = 10 2x + 8y + x^2 + 2y^2$.
- [6] a) Compute all first- and second-order partial derivatives of f(x, y).
- 4 b) Determine the maximum rate of change of f(x, y) at (x, y) = (0, 0).
- [2] c) Find the equation z = L(x, y) for the tangent plane to the graph of f(x, y) at the point (0, 0, 10).
- 12 d) Find the absolute maximum and minimum of f(x, y) on the closed region $E = \{(x, y) \mid x^2 2x + 2y^2 \le 7\}$
- 3) Evaluate the double integral of the function seen in Problem 2 over the 16 region $R = \{(x, y) \mid (x 1)^2 + 2(y + 2)^2 \le 1\}$. (Hint: Change variables via the transformation T: $x = 1 + u \cos v$, $y = -2 + \frac{1}{\sqrt{2}}u \sin v$.)
- 4) Evaluate the following line integrals along the curve C in Problem 1:

$$\begin{array}{l} \hline 8 \end{array} a) \int\limits_C g(x,y,z) \, ds \text{ with the function } g(x,y,z) = \frac{yz}{x^3}. \\ \hline 10 \end{array} b) \int\limits_C \vec{F} \cdot d\vec{r} \text{ with the vector field } \vec{F}(x,y,z) = z \, \vec{j} - y \, \vec{k}. \end{array}$$

Formula sheet

Arc Length $L = \int_a^b \vec{r}'(t) dt$, $s(t) = \int_a^t \vec{r}'(u) du$
$\vec{T}\vec{N}\vec{B}$ frame: $\vec{T}(t) = \frac{\vec{r}'(t)}{ \vec{r}'(t) }$, $\vec{N}(t) = \frac{\vec{T}'(t)}{ \vec{T}'(t) }$, $\vec{B}(t) = \vec{T}(t) \times \vec{N}(t)$
Curvature: $\kappa = \left \frac{d\vec{T}}{ds} \right = \frac{ \vec{T}'(t) }{ \vec{r}'(t) } = \frac{ \vec{r}'(t) \times \vec{r}''(t) }{ \vec{r}'(t) ^3}$
Torsion: $\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = -\frac{\vec{B}'(t) \cdot \vec{N}(t)}{ \vec{r}'(t) } = \frac{[\vec{r}'(t) \times \vec{r}''(t)] \cdot \vec{r}'''(t)}{ \vec{r}'(t) \times \vec{r}'''(t) ^2}$
Gradient of f : grad $f(x, y) = \nabla f(x, y) = \langle f_x, f_y \rangle$
Linearization of f at (a,b) : $L(x,y) = f_x(a,b)(x-a) + f_y(y-b) + f(a,b)$
Method of Lagrange Multipliers: To find the max./min. of f along the level curve $g(x, y) = k$ solve $\nabla f(x, y) = \lambda \nabla g(x, y)$ for (x, y, λ) while making sure that $g(x, y) = k$ is satisfied.
Second Derivative Test: Let (a, b) be a stationary point of $f(x, y)$ and compute $D = D(a, b) = f_{xx}(a, b)f_{yy}(a, b) - [f_{xy}(a, b)]^2$. (a) If $D > 0$ and $f_{xx}(a, b) > 0$, then $f(a, b)$ is a local minimum. (b) If $D > 0$ and $f_{xx}(a, b) < 0$, then $f(a, b)$ is a local maximum. (c) If $D < 0$, then (a, b) is a saddle point of f .
Change of Variables in a Double Integral $(T: x = x(u, v), y = y(u, v))$ $\iint_{R} f(x, y) dA = \iint_{S} f(x(u, v), y(u, v)) \left \frac{\partial(x, y)}{\partial(u, v)} \right du dv,$
where $R = T(S)$ and $\frac{\partial(x, y)}{\partial(u, v)} = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$ is the Jacobian.
Line Integral of a Scalar Function: $\int\limits_C g(x,y,z)ds = \int_a^b g(\vec{r}(t)) \vec{r}'(t) dt$
Line Integral of a Vector Field: $\int_C \vec{F}(x,y,z) \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$

Instructions

- write your name and student number on the top of each page!
- this is a closed-book exam, it is not allowed to use the textbook or the lecture notes
- you are allowed to use the formula sheet or a simple pocket calculator
- programmable calculators are not allowed, nor the use of electronic devices (tablet, laptop, mobile phone, etc.) to solve the exercises
- your work should be clearly and logically structured
- you should explain your reasoning using words
- include your computations, an answer without any computation will not be rewarded so also copy the computations from your scratch paper(s)
- you can achieve 100 points (including the 10 bonus points)